If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+13n=40
We move all terms to the left:
n^2+13n-(40)=0
a = 1; b = 13; c = -40;
Δ = b2-4ac
Δ = 132-4·1·(-40)
Δ = 329
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{329}}{2*1}=\frac{-13-\sqrt{329}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{329}}{2*1}=\frac{-13+\sqrt{329}}{2} $
| 2x+4(3x-8)=108 | | 7x+400=2x+201 | | 2x+2-1=7x+400 | | 2x+4(3x-8)=180 | | 2x+15=62-x | | 8-8(1=3x)=23-x | | F(n)=2.5n+75 | | 35-(2c+4)=2(c+3)+3 | | 3x-2/2=1-1/4 | | 2.5p(-3p-8)+5p=4(2.25p+5.5)+15.5 | | 12x-406=9x-196 | | -8=-2(6x-8) | | 9x-196=12x-406 | | 4x-8=2x+2x+9 | | 6a+212a10a-4=250 | | 3b+7-2b=20 | | 1/15=x/40 | | -3x=12=-48 | | 5x/2-3=6/7 | | 10x-9=15+3x | | X+x*6=287 | | 16x+13=125 | | −2x+5=−x+8 | | -5r+7=-3+5(-1r+2) | | 5x−3=2x+6 | | 43x-31=31x+17 | | 5(1.04)^t=12 | | x5=120 | | 3/8y+3/4y=3 | | 20x/5x=0 | | a/3+4=4a-1/5 | | 17x+1=60 |